

I. Population Characteristics
 A. Population Density: the number of organisms in a specific area
 (ex: 11 deer per square mile)

B. Range: the area where a particular organism lives and reproduces

C. Dispersion: how individuals in a population are spread out within their range

Black Bear

Density: one bear per several hundred square kilometers

Dispersion: American black bear males usually are dispersed uniformly within territories as large as several hundred square kilometers. Females have smaller territories that overlap those of males.

American Bison

Density: four bison/km² in Northern Yellowstone in 2000

Dispersion: American bison are found in clumped groups called herds.

White-tailed Deer

Dispersion: White-tailed deer are dispersed randomly throughout appropriate habitats.

Density: 10 deer/km² in some areas of the northeastern United States

 II. <u>Limiting Factors</u>: situations that prevent a population from increasing

A) <u>Density-Independent Factors</u> --do not depend on the number of individuals in the population. --Usually abiotic factors such as pollution, weather events and natural disasters

B) <u>Density-Dependent Factors</u> -become limiting only when population reaches a certain size -strongest when population is large and dense -usually biotic factors such as food,

predators, disease, and competition

C. <u>Sawtooth Curve</u>: Shows periodic fluctuations (rise and fall) of populations.

--Can show density-dependant factors at work (predator-prey) --Can show density-independent factors at work (seasonal changes)

Time

UL BEND NWR BLACK-FOOTED FERRET POPULATION, PHILLIPS COUNTY, MONTANA

Totals: Kits released = 171 / Wildborn = 188

II. Population Changes

A. Calculating Change in Population: (Births + I) - (Deaths + E)

Immigrants (I) - Individuals moving <u>i</u>nto a population

Emigrants (E) - Individuals moving out of a population (<u>e</u>xiting)

II. Population Changes

B.

C.

D.

Growth Rates= Change in Pop./Total Pop X 100 Example-Birth Rate= Number of births/Total Pop X 100 -Example-Death Rate= Number of Deaths/Total Pop X 100 Example-

B. Biotic Potential

The growth rate of a population if every individual survived and reproduced.

 Under such ideal conditions, a population would have exponential growth

Exponential growth = J-curve

Time	Number o	f Cells		70 -	
0 minutes 20 40	1 2 4	$= 2^{0}$ $= 2^{1}$ $= 2^{2}$	cells (N)	60 - 50 -	
60 80	8 16	$= 2^{3}$ = 2 ⁴	acterial	40-	
100 120 (= 2 hours	32 rs) 64 512	$= 2^{5}$ $= 2^{6}$ $= 2^{9}$	ber of b	30 - 20 -	
4 hours	4096	= 2 ¹²	Num	10-	
8 hours 12 hours	16,777,216 68,719,476,736	$= 2^{24}$ $= 2^{36}$		0-	20 40 60 80 100 120 140 Time (min)

C.<u>Carrying capacity</u>: the maximum number of individuals in a species that an environment can support I. Determined by the amount of

- *resources available (food, water, nutrients, etc)*
- 2. Results in logistic growth

D. Reproductive patterns I.r-strategist: produce many offspring in a short period of time, usually to take advantage of a temporarily available resource (mice, flies)

2.k-strategist: produce a few offspring that have a better chance of surviving with intense parental care (humans, elephants)

Minnesota Black bear Population

DNR Data:

- **3000** Baits with Tetracycline
- 165 Baits eaten by other Animals How did they know?
- 935 Baits eaten by Bears- How did they know?
- **1750** Bears Shot by Hunters
 - *120 of these were marked Teeth were stained

N=MXT/P

935 X 1750 Divided by 120 =

13,635 Number adjusted to 12,400 due to: Canadian migration and Bears eating Cattle Feed

III. H	uman population growth:						
	<u>Year</u> <u>E</u>	stimated	<u>population</u>				
	(in millions)						
	0 A.D.	1	30				
	1650	5	00				
	1850	1,	,000 (1 billion)				
	1930	2	,000				
	1970	4	,000 (4 billion)				
	1998	6	000				
	Sept 2012		5,987,000,00				
		U.S. 3	14,000,000				

A.The graph of human population is a J curve. It shows exponential growth

Number of years to add each billion (year)

Sources: First and second billion: Population Reference Bureau. Third through ninth billion: United Nations, World Population in 2300 (medium scenario), 2003.

Draw a graph of a population of organisms that is impacted annually by limiting factors and is moving toward being endangered.

Draw a graph of a population of organisms that is established and continues to be relatively stable.

How can you tell a predator population graph from a prey population graph?

B.What has allowed human populations to grow exponentially?

1.)medicine2.)plenty of food(agriculture)3.) sanitation

* medical advances allow people to live longer and decreases infant mortality(Child death)

C. What is Earths' carrying capacity? I. Unknown

- 2. J curve will continue until some resource becomes limiting
- 3. Some countries have exceeded their carrying capacities: China, Ethiopia, Somalia, India

D.Demographic Transition

- I. Shift from high birth & death rates in a population to low birth & death rates
- 2. Eventually results in slow, or no, population growth
- 3. US, Europe, Japan have shifted
- 4. Most people live in countries that have not yet gone through this change

Growth in More, Less Developed Countries

Source: United Nations, World Population Prospects: The 2002 Revision (medium scenario), 2003.

World Population Clock

Natural Increase per	World	More Developed Countries	Less Developed Countries	China
Year	80,224,198	912,053	79,312,145	7,813,361
Day	219,792	2,499	217,294	21,407
Minute	153	2	151	15

Source: Population Reference Bureau, 2004 World Population Data Sheet.

Age Structure in Human Populations Rapid Growth Slow Growth **Negative Growth** (United States) (Kenya) (Germany) Year of Birth Male Female Age Male Female Male Female Post-reproductive Before 1915 80 +75-79 1915-1919 70-74 1920-1924 65-69 1925-1929 60-64 1930-1934 55-59 1935-1939 50-54 1940-1944 45-49 1945-1949 40 - 441950-1954 Reproductive 35-39 1955-1959 30-34 1960-1964 25-29 1965-1969 20-24 1970-1974 15-19 1975-1979 10 - 141980-1984 **Pre-reproductive** 5-9 1985-1989 0-4 1990-1994 10 8 10 6 6 8 4 2 6 0 6 6 Δ 6 Å Percent of population Percent of population Percent of population

E. Human Population Control I. What factors cause populations to change? a) Births b) Immigration c) Deaths

2. How can overpopulation be controlled? Control births? deaths? immigration? emigration?

3. Zero population growth (ZPG) a) A.k.a. replacement rate b) B + I = D + E c) 2 children per family d) China allowing only 1 child!